
Dossier de Projet

NewsWik Articles

stage du 1 septembre au 24 octobre 2025

Préparation au titre de Développeur·se Web et Web Mobile

Thomas SCHMIDT

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

​ 2/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Remerciements

Je tiens à exprimer toute ma gratitude envers Alltech Consulting et Thibaud
FAURE le directeur d’agence ouest pour m’avoir accueilli et offert l’opportunité
de vivre une expérience enrichissante et formatrice. J’ai particulièrement
apprécié la confiance qui m’a été accordée ainsi que l’environnement
professionnel stimulant, propice à l’apprentissage et à l’épanouissement.

Mes remerciements s’adressent tout spécialement à mon tuteur, Fabrice
Turpeau, pour son accompagnement bienveillant, sa disponibilité et ses
conseils éclairés qui m’ont permis de progresser et de mieux comprendre les
enjeux de la mission. Son expertise et son sens du partage ont été des atouts
précieux tout au long de mon parcours.

Je souhaite aussi adresser mes sincères remerciements à l’ensemble du staff
technique d’Alltech Consulting (Maxime, David, Damien, Yannick, Orane,
Anthony) . Leur disponibilité, leur professionnalisme et leur esprit d’équipe ont
grandement facilité mon intégration et mon apprentissage. Grâce à leurs
échanges constructifs, à leur soutien au quotidien et à leur volonté de partager
leurs connaissances, j’ai pu progresser dans de bonnes conditions et acquérir
des compétences concrètes. Leur sens de la collaboration et leur rigueur
technique ont été pour moi une source d’inspiration et de motivation,
renforçant mon envie de m’investir pleinement dans ce domaine exigeant et
passionnant.

Je remercie également Jennifer Pie, pour son écoute, son soutien et son suivi
attentif du côté des ressources humaines. Son professionnalisme et sa réactivité
ont largement contribué à la qualité de mon intégration et de mon expérience
au sein d’Alltech Consulting.

Je remercie également tous les professeurs, coach, et personnels
administratifs de l’ENI pour l’aide et le soutien qu’ils m’ont procurés durant
ces 8 mois de formation.

Merci à tous pour cette collaboration positive et formatrice !

​ 3/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Table des matières

Remerciements...3

Table des matières.. 4

Introduction..7

Lexique..8

Présentation de l’entreprise.. 9

Historique de l’entreprise.. 9

Présentation des métiers...9

Clients de référence...10
Chiffres clés.. 10
Site de Niort.. 10

Equipe PDF...11
Le projet PDF et les missions de l’équipe... 11
Organisation et environnement de travail..11
Choix technologiques et méthodes de travail..11

Liste des compétences du référentiel qui sont couvertes par le projet........... 12
Configuration de l’environnement de travail... 13
Présentation générale du projet..13

Accueil personnalisés PDF (widgets à droite, Articles et Météo) - Annexe 1........14
Présentation détaillée de NewsWik Articles...15

Représentation graphique des différents modules..15
Synoptique fourni par Alltech Consulting en Annexe 2 pour plus de détails.........15

Spécification du projet...15
Définition des User Stories.. 16

En tant que Lecteur :...16
En tant qu’Auteur :.. 16

Définition des Use Case... 17
Cas d’utilisation : Utilisateur..17

Voir en annexe 3 le diagramme UML..17
Cas d’utilisation : Lecteur..17

Voir annexe 4 le diagramme UML...17
Cas d’utilisation : Auteur... 17

Voir annexe 5 le diagramme UML...17
Maquettage.. 18

Wireframes...18
Module “Lecteur” Mfe-preview.. 18
Application “Lecteur”... 18
Application “Auteur”...18

Identité graphique...19
Charte graphique...20

​ 4/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Maquettes.. 21
Maquette(mobile) - mfe-preview..21
En annexe 7 un aperçu du mode “inspecter” de Microsoft Edge présente
l’interface et son code... 21
Maquette(mobile) - lecture d’un article..22
Maquette(Desktop) - Auteur - Accueil... 23
Maquette(Desktop)- Auteur - Liste.. 24
Maquette(mobile) - Auteur - Accueil & menu déplié..25

Architecture du projet.. 26
Voir Annexe 6 Découpage back/front..26

Back-End...26
Front-End.. 26

Partie Back-End du projet.. 27
Arborescence du projet... 27

Base de données...28
Exemple d’un article en base de données.. 28
Détails du document..29

Stockage de l’image..29
L’ API.. 30
Diagramme des classes... 30

Diagramme de classes de l’API.. 30
La couche Model...30

La classe Article.java...31
La couche Repository...32

L’interface ArticleRepository.java.. 32
Détails de l'interface..32

La couche Service...32
Extrait de la classe ArticleService.java..33

Le package Dto..34
Extrait de la classe ArticleDto.java..34

Le package Mapper...35
Extrait de la classe ArticleMapper.java..35

La couche Controller.. 36
Extrait de la classe ArticleController.java.. 36
En annexe 9 la classe ArticleController.java affiche toutes les opérations du
CRUD..36

Endpoints...36
Documentation des EndPoints de l’API...37
Exemple Requête GET/articles...38

Tests de l’API...39
Détails du test simulé : requête POST (“/article”)..39

Extrait du test de la requête POST ArticleControllerTest.java..............................39
Détails du test simulé : la requête GET (“/articles”)... 40

Extrait du test de la requête GET ArticleControllerTest.java................................. 40
Résultats du test POST sous IntelliJ...40

​ 5/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Test réels avec Postman...41
Exemple de test de la Requête DELETE.. 41

Résultat de la requête Delete sur Postman...41
Exemple de test de la Requête GET...41

Résultat de la requête Get sur Postman... 41
Partie Front-End du projet... 42

Arborescence du projet... 42
Exemple de fichier VueJs..42

Extrait de CreatePage.vue.. 43
Règles de validation... 43

Extrait du fichier src/pages/PostForm.vue...43
Extrait du script js de Postform.vue, création “textuel” de l’article.........................44
Extrait du script js de Postform.vue, envoi de l’image par requête POST.............44

Interactions utilisateur... 44
Requêtes HTTP.. 44

Design Responsive...44
Extrait du CSS du fichier Header.vue, partie @media.. 45
Onglet “Styles” des éléments bouton burger...45

Veille Technologique.. 46
Recherche à partir de site anglophone...49

Extrait du site Vue... 49
Bilan et perspectives du projet..52
Conclusion.. 53
Annexes... 54

Annexe 1 - Espace de travail collaborateur...55
Annexe 2 - Synoptique du projet NewsWik...56
Annexe 3 - Diagramme UML - Cas d’utilisation Utilisateur................................... 57
Annexe 4 - Diagramme UML - Cas d’utilisation Lecteur....................................... 58
Annexe 5 - Diagramme UML - Cas d’utilisation Auteur...58
Annexe 6 - Découpage Back et Front... 60
Annexe 7 - MFE-Preview - Interface utilisateur(lecteur) et code...........................61
Annexe 8 - page Create - interface (Auteur) et code.. 62
Annexe 9 - ArticleController.java...63

​ 6/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Introduction

Je suis né en 1982 et à cette époque les ordinateurs n'étaient pas très communs dans les
foyers…

Mais à 10 ans j’ai eu mon premier ordinateur, et c’est devenu une passion immédiatement.
Ensuite je me suis orienté vers un cursus en électronique (BAC STI électronique puis BTS
électronique) pour comprendre comment fonctionnait le cœur de mon ordinateur.

Après l’obtention de mon BTS, j’ai travaillé pendant 22 ans dans le secteur de l’aéronautique,

où j’ai eu la chance d'œuvrer sur du matériel civil (équipements divers d’A320 / A340 / A380

/ B787…) et militaire (Mirage 2000, Rafale, NH90, Tigre …) de haute technologie et, à

certaines occasions, d’intervenir directement sur des bases à l’étranger (Italie, Finlande).

 Au fil de ce parcours, j’ai occupé différents postes : technicien de réglage, technicien de

réparations, technicien de tests, ainsi que contrôleur d’approbation pour remise en service.

Ces expériences m’ont permis d’acquérir une expertise solide dans le domaine du hardware,

mais aussi de développer des qualités indispensables telles que la rigueur, la polyvalence et

la capacité d’adaptation.

Fort de cette expérience, j’ai choisi de donner une nouvelle orientation à ma carrière et de

revenir à ma première passion : l’informatique. J’ai décidé de me tourner vers le

développement logiciel, et plus particulièrement le développement d’applications web.

C’est dans cette optique que j’ai intégré la formation de Développeur Web/Web Mobile à

l’ENI École Informatique, après avoir réussi les tests et l’entretien de sélection. J’ai débuté ce

cursus le 17 mars 2025, convaincu qu’il représente le meilleur tremplin pour concrétiser mon

projet professionnel.

Mon objectif à présent est de poursuivre mon parcours par une alternance en Concepteur

Développeur d’Applications (CDA), afin de consolider mes compétences, gagner en

expérience pratique et devenir pleinement opérationnel en tant que développeur web.

​ 7/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Lexique

API : Application Programming Interface
BAC STI : Baccalauréat Sciences et Technologies Industrielles
BSON : Binary JSON
BTS : Brevet de Technicien Supérieur
CDA : Concepteur Développeur d'Applications
CORS : Cross-Origin Resource Sharing
CRUD : Create, Read, Update, Delete
CSS : Cascading Style Sheets
CVE : Common Vulnerabilities and Exposures
DWWM : Développeur Web et Web Mobile
DTO : Data Transfer Object
ES : ECMAScript
ESN : Entreprise de Services du Numérique
HTML : HyperText Markup Language
HTTP : HyperText Transfer Protocol
HTTPS : HyperText Transfer Protocol Secure
IDE : Integrated Development Environment
IT : Information Technology (Technologie de l'Information)
JSON : JavaScript Object Notation
LTS : Long-Term Support
MFE : Micro FrontEnd
MIME : Multipurpose Internet Mail Extensions
NoSQL : Not Only SQL
NPM : Node Package Manager
OWASP : Open Web Application Security Project
PDF : Plateforme Dématérialisée de Formation
REST : Representational State Transfer
SPA : Single-Page Application
SQL : Structured Query Language
SSRF : Server-Side Request Forgery
TLS : Transport Layer Security
UI : User Interface
UML : Unified Modeling Language
URL : Uniform Resource Locator
UX : User Experience
XSS : Cross-Site Scripting

​ 8/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Présentation de l’entreprise

Historique de l’entreprise

Alltech a été fondée en 2015 à Bordeaux par Wilfrid PICQ et Frédéric LASCOMBE, deux
professionnels issus du secteur des services numériques (ESN). Forts de plusieurs années
d’expérience dans la gestion de projets informatiques et l’accompagnement d’équipes
techniques, ils ont souhaité créer une société de services à taille humaine, centrée sur la
qualité des relations humaines et la pertinence des missions proposées.

L’objectif d’Alltech est de proposer une approche du consulting IT plus agile et collaborative,
valorisant l’écoute, l’expertise technique et l’épanouissement des collaborateurs. Depuis sa
création, l’entreprise a connu une croissance régulière tout en conservant ses valeurs
d’origine : proximité, transparence et engagement dans la réussite des projets clients.

Présentation des métiers

L ’ADN Alltech Consulting est profondément ancré dans le développement informatique.
C’est là que tout a commencé : dans la technique, au plus proche du code, des frameworks,
des architectures, des environnements complexes — Là où les projets prennent réellement
vie.

Voici les métiers qui structurent un projet IT chez Alltech Consulting :

●​ Scrum Masters & Chefs de Projet pour orchestrer l’agilité et garantir l’avancement des
équipes

●​ Business Analysts pour faire le pont entre les enjeux métier et les solutions
techniques

●​ UX/UI Designers pour concevoir des expériences utilisateurs intuitives et des
interfaces à la fois esthétiques et fonctionnelles

●​ DevOps pour assurer la stabilité et la mise en production fluide des applications
●​ Product Owners pour incarner la vision produit
●​ Mais aussi experts en delivery, qualité, accompagnement au changement, Data

Analysts, Data Engineers, Data Scientists…

​ 9/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Clients de référence

Chaque agence Alltech Consulting développe des partenariats solides avec des clients qui lui
sont propres, ce qui permet une couverture sectorielle large et des contextes projets très
variés :

●​ Banque & Assurance
●​ Secteur public
●​ Industrie
●​ E-commerce

Chiffres clés

Alltech est aujourd’hui une entreprise solidement implantée dans le paysage du conseil en
technologies. Présente dans 11 villes en France et disposant de 4 agences principales situées
à Bayonne, Bordeaux, Niort et Nantes, elle compte plus de 180 collaborateurs mobilisés sur
plus de 100 projets actifs. Forte de cette croissance continue, l’entreprise a réalisé un chiffre
d’affaires de 16 millions d’euros en 2024, confirmant sa place parmi les acteurs dynamiques
du secteur des services numériques.

Site de Niort

Je suis en stage à l’agence de Niort, 7
Esplanade de la République.

Elle occupe le 1er, 2eme et 3eme étage d’un
immeuble en plein centre de Niort, face à la
place de la brèche.

Le 1er étage est un espace détente avec
machine à café, fauteuils et tables pour se
restaurer.

Le 2eme étage est constitué des bureaux des
équipes techniques avec plusieurs salles de
réunions dont une équipée pour la
visioconférence.

Et le dernier niveau concerne plus
particulièrement les métiers transverses
comme ressources humaines, commerciaux,
direction, mais peut aussi accueillir réunions
et équipes techniques.

​ 10/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Equipe PDF

Le projet PDF et les missions de l’équipe
L’équipe dans laquelle je travaille est encadrée par Fabrice Turpeau, responsable du projet
PDF (Plateforme Dématérialisée de Formation). Ce projet est le développement d' un logiciel
permettant de gérer et de dématérialiser les processus de formation. L’avancement du
développement est suivi à l’aide d’un tableau Kanban sur GitHub, qui permet de visualiser les
tâches à faire, en cours et terminées. Chaque vendredi après-midi, une réunion d’équipe est
organisée afin d’échanger sur l’avancement du projet, les difficultés rencontrées et les pistes
d’amélioration.

Organisation et environnement de travail
Les collaborateurs d’Alltech travaillent selon un rythme hybride, avec deux jours par semaine
en présentiel à l’agence et le reste du temps en télétravail. La communication est assurée
grâce à Microsoft Teams, ce qui permet de garder un lien constant entre les membres de
l’équipe. Les développeurs disposent d’un environnement de travail principalement basé sur
Windows, avec les outils nécessaires au développement, aux tests et au suivi du projet.

Choix technologiques et méthodes de travail
Les principaux langages et frameworks utilisés au sein du bassin niortais sont Java avec
Spring, Kotlin, React et Angular. En tant qu’Entreprise de Services du Numérique (ESN),
Alltech Consulting adapte ses technologies aux besoins de ses clients et aux spécificités des
projets. L’équipe suit une méthodologie de travail Agile, qui repose sur des itérations courtes,
une communication régulière et des réunions de suivi (planifications, points quotidiens et
revues de sprint). Cette approche favorise la réactivité et l’amélioration continue du projet
PDF.

​ 11/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Liste des compétences du référentiel qui sont couvertes par le
projet

​ 12/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Configuration de l’environnement de travail

Avant toutes choses il a fallu configurer le PC fourni par l’entreprise et l’espace de travail ainsi
qu’installer les IDE utilisés par Alltech Consulting.
IntelliJ et VScode ont donc été installés puis configurés.
Chez Alltech Consulting, habituellement, on utilise les IDE :

●​ IntelliJ plutôt pour le Back-End
●​ VSCode plutôt pour le Front-End.

J’ai utilisé IntelliJ pour le backend et le frontend.

Une branche Git à été ajoutée au projet PDF par mon tuteur afin de pouvoir versionner et
partager mon code en ligne.

Installation de logiciels “utilitaires” :

-​ UMLet pour intégrer les diagrammes de cas d’utilisations.
-​ MongoDB Compass pour la visualisation de la Base de données.
-​ Postman pour tester les requêtes vers l’API.

​ 13/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Présentation générale du projet

La plateforme PDF actuellement en construction souhaite se doter de plusieurs widgets pour
agrémenter la page d’accueil des collaborateurs.

Voici les trois widgets retenus :

●​ NewsWik Weather qui présente la météo.
●​ NewsWik Ephemeris qui présente les données du jour (date, Saint du jour,

Citations…).
●​ NewsWik Articles qui présente une sélection de quelques articles.

Le projet qui englobe le développement de ces 3 widgets se nomme NewsWik.

NewsWik Articles est le projet qui m’a été attribué.

Accueil personnalisés PDF (widgets à droite, Articles et Météo) - Annexe 1

​ 14/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Présentation détaillée de NewsWik Articles

Un micro frontend est un module autonome du front-end, développé et maintenu
indépendamment, qui peut s’intégrer facilement dans une application principale pour en
étendre les fonctionnalités.

Le module micro frontend Articles présente une sélection de quelques titres d’articles qui
seront disponibles à la lecture.

 Lorsque l’utilisateur clique sur l’article, il est redirigé vers l’application “lecteur” qui permet
de visionner la photo taille réelle, lire l’article. Des informations supplémentaires sont
disponibles comme la date de création, la date de modification, le nom de l’auteur.

Les articles présentés sont écrits par des collaborateurs qui ont accès à une autre application
Web côté Auteur. Les articles peuvent être aussi modifiés, publiés ou dépubliés.

Une API commune au module “lecteur” et “auteur” s’occupe de fournir les données en
provenance de la base de données.

Représentation graphique des différents modules

Synoptique fourni par Alltech Consulting en Annexe 2 pour plus de détails.

Spécification du projet

Les contraintes techniques de ce projet était :

●​ utiliser le langage Java et le framework Spring pour la partie Backend
●​ utiliser javascript et le framework vueJs pour la partie Frontend
●​ utiliser la base de données MongoDb pour le stockage

​ 15/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Définition des User Stories

La définition des User Stories permet de bien capter le besoin du client. Dans notre projet On
peut déjà définir qu’un “Utilisateur” peut être “Lecteur” ou “Auteur”.

En tant que Lecteur :

●​ Je veux avoir une prévisualisation des articles sur mon espace de travail, afin de
pouvoir sélectionner rapidement l’article qui m’intéresse.

●​ Je veux voir la liste des articles disponibles, afin de choisir ceux qui m’intéressent.​

●​ Je veux pouvoir filtrer les articles par catégorie, auteur ou date, afin de trouver

rapidement un contenu spécifique.​

●​ Je veux rechercher un article par mot-clé, afin d' accéder rapidement à une
information précise.​

●​ Je veux lire le contenu complet d’un article, afin de profiter de sa lecture sans
distraction.

En tant qu’Auteur :

●​ Je veux pouvoir créer un nouvel article, afin de publier du contenu sur la plateforme.​

●​ Je veux pouvoir enregistrer un article en brouillon, afin de le finaliser plus tard.​

●​ Je veux modifier un article existant, afin de corriger ou améliorer mon contenu.​

●​ Je veux pouvoir publier un article, afin d’afficher son contenu aux lecteurs.​

●​ Je veux pouvoir dé-publier un article, afin de ne pas l’afficher aux lecteurs.​

●​ Je veux pouvoir ajouter une image à mon article afin de le rendre plus attractif.​

●​ Je veux voir la liste de mes articles (publiés, dé-publiés et brouillons), afin de gérer
efficacement ma production.

​ 16/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Définition des Use Case

J'ai défini les use case ou cas d’utilisations avec l’aide de mon tuteur Fabrice Turpeau.

Cas d’utilisation : Utilisateur

Voir en annexe 3 le diagramme UML.
Un utilisateur peut être lecteur et/ou auteur selon l’interface qu’il utilise.
Dans ces deux cas, il a été décidé que les accès sécurisés seraient gérés par l’entité
supérieure à savoir la plateforme PDF.

Cas d’utilisation : Lecteur

Voir annexe 4 le diagramme UML.
L’utilisateur qui est lecteur peut en utilisant l’interface de lecture :

●​ cas N°1 : Lire un article en accédant à la liste des articles puis à son contenu complet.
●​ cas N°2 : Rechercher un article en tapant en barre de recherche (un mot, un auteur)
●​ cas N°3 : Trier / Filtrer les articles en renseignant des critères (par date, ordres

alphabétique, auteur, articles)

Cas d’utilisation : Auteur

Voir annexe 5 le diagramme UML.
L’Utilisateur qui est Auteur peut en utilisant l'interface auteur :

●​ cas N°1 : Créer un article en renseignant les différents champs du formulaire. En
fonction des différentes vérifications métiers l’article est sauvegardé en tant que
brouillon (“DRAFT”) avec une date et heure de création actuelles.

●​ cas N°2 : Publier un article, en vérifiant le statut préalable de “brouillon” ou
“dépublié”.

●​ cas N°3 : Dé-publier un article, en vérifiant le statut préalable “publié”.
●​ cas N°4 : Modifier un article en récupérant les informations déjà saisies, en les

rectifiant au besoin et en enregistrant ces nouvelles informations.

​ 17/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Maquettage

Wireframes

Voici quelques Wireframes que j’ai dessiné pour le prototypage du projet avec l’équipe.

Module “Lecteur” Mfe-preview

Le module micro frontend(mfe) est le widget qui sera inséré dans une page “hôte” au même
titre que les widget météo et éphéméride. Il contient une sélection d’articles miniaturisés
avec pour chacun la photo, le titre et la description.

Application “Lecteur”

On accède à l’application lecteur par le module micro frontend. Cette application permet
ensuite de lire l’article complet et d’accéder à d’autres articles.

​ 18/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Application “Auteur”

L’application auteur permet la navigation dans les différentes pages :

-​ page d’accueil
-​ créer un article
-​ modifier un article
-​ publier / dépublier un article
-​ l’accès à la liste de tous les articles qui est aussi un moyen d’accéder à toutes les

fonctionnalités précitées

​ 19/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Identité graphique

Voici la charte graphique que j’ai mise en place sous Figma.
J’ai récupéré les couleurs dominantes que j’ai trouvées sur le site internet de l’entreprise
Alltech Consulting.

Charte graphique

​ 20/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Maquettes

Voici quelques-unes des maquettes qui ont toutes été réalisées sous Figma.

Maquette(mobile) - mfe-preview

En annexe 7 un aperçu du mode “inspecter” de Microsoft Edge présente l’interface et son
code.

​ 21/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Maquette(mobile) - lecture d’un article

​ 22/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Maquette(Desktop) - Auteur - Accueil

​ 23/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Maquette(Desktop)- Auteur - Liste

​ 24/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Maquette(mobile) - Auteur - Accueil & menu déplié

​ 25/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Architecture du projet

L’architecture du projet repose sur une séparation claire entre les couches Front-End et
Back-End, favorisant la modularité, la maintenabilité et l’évolution de l’application.

Voir Annexe 6 Découpage back/front.

Back-End
La partie Back-End, dédiée à la gestion de l’API, est développée en Java 21, une version LTS
(Long-Term Support) garantissant stabilité et support à long terme.​
 Elle s’appuie sur le framework Spring, qui facilite la création de services RESTful et la gestion
des dépendances. Le gestionnaire de build Gradle est utilisé pour la compilation, la gestion
des dépendances du projet.
Il s’agit d’un développement en couches (Controller/Service/Dto/Model/Repository). Pour
une meilleur :

-​ séparation des responsabilités,
-​ testabilité
-​ lisibilité et maintenance
-​ facilité d’évolution (changer la bdd par exemple)

Pour le stockage c’est MongoDb qui a été choisie car c’est une base de données orientée
documents (NoSQL). Chaque article est stocké sous forme de document JSON (ou BSON) ce
qui permet une structure souple et modifiable. MongoDB est optimisé pour les opérations
de lecture rapide et la recherche textuelle.
Les données peuvent être hétérogènes (texte long, contenu HTML, Markdown, images
intégrées, commentaires imbriqués…) mais MongoDB les gère naturellement, sans devoir
créer de multiples tables et relations complexes (contrairement à un modèle SQL).

Front-End

Les interfaces utilisateur — interface lecteur et interface auteur — sont développées avec le
framework Vue.js (version 3.5.18), exécuté dans un environnement Node.js.​

Le framework PicoCSS est utilisé pour la mise en forme des composants graphiques et pour
garantir un design responsive, assurant ainsi une bonne adaptabilité sur différents types
d’écrans (ordinateurs, tablettes, smartphones). Mais des spécificités sur chaque page sont
possibles grâce au concept de vue.js qui autorise du CSS, HTML & JS sur chaque fichier .vue .

​ 26/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Partie Back-End du projet

La partie Backend comporte la base de données et l’API dont voici l’arborescence du projet.

Arborescence du projet

​ 27/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Base de données

Il a été fait le choix de la simplicité pour la base de données.
MongoDB étant orienté documents (NoSQL), on ne parle pas de tables ni de relations strictes
comme en SQL, mais plutôt de collections et documents imbriqués.

L’enregistrement de l’image depuis le formulaire du frontend se fait en base64 puis est codée
en “binary” pour le stockage en bdd.

Les articles sont enregistrés dans la base de données MongoDB au sein d’une collection
appelée posts.
Chaque document de cette collection représente un article unique, contenant notamment :

●​ le contenu de l’article,
●​ le nom de l’auteur,
●​ diverses métadonnées (date de création, catégories, etc.),
●​ ainsi que le lien ou les données de l’image associée.

Cette collection est utilisée par notre application de gestion d’articles pour stocker et gérer
l’ensemble des publications.

Exemple d’un article en base de données

Ce fichier JSON correspond à la représentation BSON stockée dans MongoDB.​
 Les marqueurs comme $oid, $date, ou $binary sont utilisés par MongoDB pour encoder les
types natifs :
$oid → identifiant unique (ObjectId)​
$date → valeur de type Date​
$binary → donnée binaire encodée en base64​
Le champ _class indique qu’on utilise Spring Data MongoDB : c’est ajouté automatiquement.
La métadonnée fait le lien entre la collection MongoDB et la classe Java Article.

​ 28/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Détails du document

Champ Type Description

_id ObjectId Identifiant unique généré automatiquement par
MongoDB pour ce document.

name String Titre de l’article. Ici : “Le climat change rapidement”.

content String Contenu principal de l’article, sous forme de texte enrichi.

author String Nom de l’auteur ayant rédigé l’article. Ici : Alice Dupont.

date_created Date Date et heure de création de l’article (au format ISO).

date_updated Date Date de dernière mise à jour de l’article.

image Binary
(BSON)

Donnée binaire encodée en base64, représentant l’image
associée à l’article.

imageContentType String Type MIME de l’image (ici image/png). Permet d’indiquer
comment interpréter la donnée binaire.

status String État de publication de l’article : "DRAFT", "PUBLISHED",
“UNPUBLISHED”.

_class String Métadonnée ajoutée par l’ORM Spring Data pour
MongoDB, indiquant la classe Java associée
(fr.alltechconsulting.api.model.Article).

Stockage de l’image

L’image associée à chaque article est stockée directement dans le document MongoDB sous
forme binaire, plutôt que sur un serveur distinct avec uniquement un chemin d’accès
enregistré dans la base de données (méthode plus courante).
Cette approche permet de récupérer facilement l’article complet avec son image intégrée.
Cependant, elle peut augmenter la taille des documents lorsque les images sont
volumineuses.
Dans notre cas, cet inconvénient a été compensé par l’utilisation d’appels d’API qui séparent
les champs texte et image de chaque article, optimisant ainsi les échanges et les
performances de l’application.

​ 29/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

L’ API

Diagramme des classes

Voici un diagramme de classes qui permet une vue d’ensemble (mis en forme par IntelliJ)
avec les méthodes et propriétés.Il montre aussi les relations entre les classes.

Diagramme de classes de l’API

​ 30/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

La couche Model

Les types de champs de la collection MongoDB sont définis à partir de l’entité Article.java,
située dans le package model de l’API.
Ainsi, la structure des documents stockés dans la collection correspond directement à la
modélisation de la classe Java, garantissant la cohérence entre la base de données et le code
de l’application.

La classe Article.java

​ 31/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

La couche Repository

L’accès au données se fait par la couche repository et précisément par l’interface
“ArticleRepository.java”

L’interface ArticleRepository.java

Détails de l'interface

L’annotation @Repository indique à Spring que c’est un élément de la couche persistance.

L’interface hérite de MongoRepository :

-​ Le premier paramètre générique est une entité de type “Article”
-​ Le second paramètre se réfère au type de l’identifiant (@Id de la classe Article).

En héritant de MongoRepository, cette interface a donc accès à tout un panel de méthodes
sans avoir besoin de les implémenter comme par exemple :

-​ save(Article article) Sauvegarde ou met à jour un article
-​ findById(String id) Recherche d’un article par son identifiant
-​ findAll() Renvoi tous les articles
-​ deleteById(String id) Supprime un article par son identifiant
-​ et d’autres encore…

Il serait néanmoins possible de faire un @Override de ces méthodes afin de les modifier
mais celles de base nous conviennent parfaitement.

La couche Service

La couche service va maintenant pouvoir utiliser les méthodes héritées de
“MongoRepository<>”
Cette couche contient les besoins métiers de l’application.
La couche service fait appel aux mappers pour convertir les objets selon les besoins de
l’application.
Ces mappers permettent de créer ou de transformer les objets DTO (Data Transfer Objects) à
partir des entités du modèle, ou inversement, afin de faciliter les échanges entre les
différentes couches de l’application.
Il y a donc une séparation entre modèle métier et modèles de transfert.

​ 32/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Extrait de la classe ArticleService.java

​ 33/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Le package Dto

Les attributs de l’entité Article sont répartis dans deux DTO, ArticleDto.java et
ImageDto.java . L’ ArticleDto contient, sur les attributs name, content et author, des
contraintes de validations matérialisées par @NotBlank et @Size de la bibliothèque
“jakarta.validation.constraints.NotBlank” ou “.Size” .

Extrait de la classe ArticleDto.java

​ 34/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Le package Mapper

Selon le sens du flux de données, la classe ArticleMapper permet soit de construire un DTO à
partir d’un objet Article grâce à la méthode mapToDto(), soit de convertir un DTO en entité
Article via la méthode mapToEntity().
Cette dernière opération est notamment utilisée pour transmettre les données à la couche
repository, en vue de leur enregistrement dans la base de données.

Extrait de la classe ArticleMapper.java

​ 35/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

La couche Controller

ArticleController est la façade de l'application, elle expose les opérations CRUD (Create Read
Update Delete) en s’appuyant sur la couche Service.
La couche Controller reçoit les requêtes HTTP de l’extérieur. Elle est vulnérable aux attaques
et doit être sécurisée par l’annotation “@CrossOrigin” qui verrouille l’accès aux utilisateurs
externes (politiques CORS, Cross Origin Resource Sharing). Ici deux utilisateurs autorisés (
localhost:5173 et localhost:5174).
En plus l’annotation @CrossOrigins ne permet que quelques types de méthodes (GET, POST,
PATCH, PUT, DELETE).
Dès le démarrage de l’application, l’injection de dépendances par constructeur permet de
réduire le couplage entre les classes.

Extrait de la classe ArticleController.java

En annexe 9 la classe ArticleController.java affiche toutes les opérations du CRUD.

Endpoints

Les Endpoints sont les points d’entrées qui permettent d'interroger la base de données par
l’intermédiaire de l’API.
J’utilise Swagger et la dépendance 'org.springdoc:springdoc-
openapi-starter-webmvc-ui:2.8.6' pour générer la documentation qui servira à l’utilisateur

​ 36/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

de l’application (programmeur côté frontend par exemple). De cette façon, il pourra utiliser
l’API correctement et éventuellement tester des requêtes.

Documentation des EndPoints de l’API

​ 37/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Exemple Requête GET/articles

​ 38/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Tests de l’API

Les tests de l'API peuvent être réalisés de deux manières complémentaires :

Tests simulés (automatisés) : à l’aide de l’environnement de test de Spring Boot, notamment
avec les annotations @SpringBootTest et l’outil MockMvc. Cela permet d’écrire des
programmes de test qui simulent des appels HTTP et vérifient automatiquement les
réponses, les statuts, et les comportements attendus. Ce type de test est utile pour
automatiser la validation des fonctionnalités et s’intègre facilement dans un processus
d’intégration continue (CI).

Tests réels : en lançant l’API localement, puis en utilisant un outil comme Postman pour
envoyer des requêtes HTTP manuelles (GET, POST, PUT, DELETE, etc.) et observer les
réponses. Ce type de test permet de valider le comportement global de l’API dans des
conditions proches de la production.

Détails du test simulé : requête POST (“/article”)

1- Je définis le contenu d'une requête (payload) POST de création d’article.
2- Je simule l’envoi de la requête avec :
mockMvc.perform(post(“/article).contentType(“application/json”).content(payload)
3- Je contrôle le retour de l’API :

-​ .andExpect(status().isCreated()) est le status Http 201 attendu.
-​ .andExpect(content().contentTypeCompatibleWith("application/json")) assure la

compatibilité entre les types de contenu.
-​ .andExpect(jsonPath("$.name").value("Title test")) pour vérifier le contenu du

champ name.
-​ .andExpect(jsonPath("$.id").exists()) je vérifie que l’id est bien renvoyé.

Extrait du test de la requête POST ArticleControllerTest.java

​ 39/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Détails du test simulé : la requête GET (“/articles”)

1- Je lance une requête GET (“articles”) lecture de tous les articles.
2- Je surveille le statut de retour “isOk()” qui est le statut HTTP 200.
3- Le type de retour doit être de type json
4- Je cherche dans la liste qu’il y a bien un champ avec l’expression :

-​ jsonPath "$[?(@.name == 'Title test' && @.content == 'Content test' && @.author
== 'Author test')]"

Extrait du test de la requête GET ArticleControllerTest.java

Résultats du test POST sous IntelliJ

​ 40/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Test réels avec Postman

Il faut lancer l’API puis le logiciel Postman.

Exemple de test de la Requête DELETE
sur http://localhost:9000/article/1 va nous permettre de supprimer l’article précédemment
créé. Je constate un status 200 (OK) qui nous indique que la requête s’est effectuée
correctement.

Résultat de la requête Delete sur Postman

Exemple de test de la Requête GET
sur http://localhost:9000/article/1 va nous permettre de voir si l’article est toujours présent
en bdd Je constate le statut 404 (NOT FOUND). Il nous indique que la requête n’a pas trouvée
ce qui a été demandé.

Résultat de la requête Get sur Postman

​ 41/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Partie Front-End du projet

Arborescence du projet

Il y a deux parties Frontend sur mon projet, mais à partir de maintenant nous ne parlerons
que de l’application webapp-author car c’est celle qui regroupe le plus de fonctions.
Elle est globalement programmée en javascript, CSS et .vue .

Exemple de fichier VueJs

Une des particularités de VueJs est que son fichier “.vue” contient :

-​ de l’HTML entre les balises <template></template>
-​ du javascript ou du Typescript entre les balises <script></script>
-​ du CSS entre les balises <style></style>

La page de création d’article (CreatePage.vue) utilise un component qui s’appelle <Postform
/>. Ce component contient les champs du formulaire de création d’articles que j’ai regroupé
dans un composant pour une meilleure lisibilité du code et d’une potentielle réutilisation
future.

​ 42/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

 Extrait de CreatePage.vue

En annexe 8 un aperçu du mode “inspecter” de Microsoft Edge présente l’interface et son
code.

Règles de validation
Afin d'optimiser les performances et la fiabilité du système, des règles de validation
(required, minlength, maxlength et accept) sont appliquées dès le niveau du formulaire
utilisateur. Ces règles, alignées sur celles du backend, permettent de limiter les erreurs côté
API, de réduire la consommation de ressources serveur et d’améliorer la fluidité de
l’application.

Extrait du fichier src/pages/PostForm.vue

Ensuite dans le script js on découpe en deux étapes la soumission du formulaire (création de
l’article, puis upload de l’image) permet de séparer les responsabilités : les données
textuelles sont envoyées en JSON, tandis que l’image est envoyée sous forme de
multipart/form-data. Cette organisation respecte les bonnes pratiques REST et rend l’API plus
modulaire et maintenable.

​ 43/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Extrait du script js de Postform.vue, création “textuel” de l’article

J’utilise cette première étape pour récupérer l’id de l’article nouvellement créé. Cet id
permettra ensuite d’attribuer l’image au bon article grâce à la requête POST
/article/${articleId}/upload .

Extrait du script js de Postform.vue, envoi de l’image par requête POST

Interactions utilisateur
Grâce à l’import de la bibliothèque vue-toastification on utilise des popup pour informer
l’utilisateur de la bonne, ou mauvaise, prise en compte des champs du formulaire.
On remarque que des logs ont été insérés pour le débogage de l’application.

Requêtes HTTP
Pour les requêtes HTTP nous utilisons la bibliothèque axios() plutôt que fetch() pour sa plus
grande concision dans le code, sa gestion automatique des en-têtes et sa meilleure gestion
des erreurs. Cela permet une lisibilité du code améliorée.

​ 44/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Design Responsive

Le composant Header, présent sur l’ensemble des pages de l’application, a été conçu de
manière responsive.
Deux modes d’affichage sont prévus : un affichage "desktop" pour les écrans larges
(supérieur à 901 pixels de largeur), et un affichage "mobile" pour les écrans plus petits (< ou
= à 900 pixels de largeur).
À l’aide de la règle @media dans la section CSS du fichier Header.vue, une cassure de mise
en page (ou breakpoint) est définie à 900 pixels de largeur. En dessous de ce seuil, les liens
de navigation tels que “Créer un article” ou “Modifier un article” sont masqués et remplacés
par un bouton "burger", afin d’optimiser l’affichage et l’expérience utilisateur sur mobile.

Extrait du CSS du fichier Header.vue, partie @media

On peut tester le design responsive en utilisant des outils de développement d’un navigateur
(par exemple : Chrome). Ce qui permet de réduire artificiellement les dimensions de l’écran
d’affichage de l’application web et ainsi tester les breakpoints. Des valeurs pré-enregistrées
sont disponibles pour se mettre à la place d’un utilisateur d’un iphone SE, d’une tablette
Ipad-mini…

Par exemple pour un mobile Iphone-SE qui fait 375px largeur, la règle @media est prise en
compte et s’affiche donc dans l’onglet style de l’outil de développement de Chrome.

Onglet “Styles” des éléments bouton burger

​ 45/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Veille Technologique

Dans le cadre de la veille technologique, je me suis intéressé au document de référence
OWASP Top Ten proposé par l’OWASP. Ce guide présente les dix principaux risques de
sécurité des applications web, identifiés par la communauté et par l’analyse de vulnérabilités
terrain.
Pour mon projet — une application front‑end en Vue.js et un backend API en Spring
Boot/Java — ce document permet de cadrer les aspects sécurité dès la conception et le
développement : il invite à porter une attention particulière à des problématiques comme le
contrôle d’accès, l’injection, les mauvaises configurations et l’exposition de composants
obsolètes. En intégrant les bonnes pratiques OWASP dans l’architecture (par exemple
validation des entrées, gestion des erreurs, sécurisation des endpoints, mise à jour des
dépendances), on renforce la fiabilité et la robustesse de l’application. Cette démarche
proactive s’inscrit pleinement dans une philosophie « shift‑left », c’est‑à‑dire anticiper la
sécurité dès les premiers stades du développement, et non uniquement en fin de projet ou
après un audit.

Voici le top 10 des risques de sécurité des applications Web établit en 2021 vis a vis de mon
projet :

A01-2021 – Broken Access Control
Le contrôle d’accès est centralisé au sein de la plateforme de formation PDF, qui gère
l'authentification et l’autorisation des utilisateurs.
Mon application Newswik-Articles s’intègre à cette plateforme, qui applique la politique de
contrôle d’accès.

A02-2021 – Cryptographic Failures
Les échanges entre le frontend Vue.js et le backend Spring Boot se font actuellement sur un
réseau interne sécurisé, sans exposition extérieure. Aucune donnée sensible (mot de passe,
token, données personnelles) n’est transmise ou stockée par l’application.
Toutefois, pour renforcer la sécurité conformément aux bonnes pratiques OWASP, une
transition vers HTTPS pour tous les échanges (y compris internes) est possible.
Cette évolution passera par la configuration de Spring Security pour activer TLS côté
backend, et l’envoi systématique des requêtes HTTPS depuis le frontend Vue.js.

A03-2021 – Injection
Mon application Vue.js utilise uniquement des liaisons textuelles sécurisées {{ }} , ce qui évite
l’exécution de contenu potentiellement injecté (XSS).
Aucune génération de code HTML par JavaScript n'est effectuée dans le DOM.
Le backend utilise Spring Boot avec MongoRepository sans surcharge de méthodes ni
requêtes personnalisées. Cela garantit l’utilisation de requêtes paramétrées générées
automatiquement, évitant les risques d’injection NoSQL.
Les données en entrée sont encapsulées dans des DTO validés, empêchant l’injection de
contenu malformé ou inattendu.

​ 46/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

A04-2021 – Insecure Design​
L’architecture de l’application repose sur une séparation claire des responsabilités entre le
frontend Vue.js, le backend Spring Boot, et la plateforme de contrôle d’accès (PDF).​
Le design respecte les principes de sécurité dès la conception :

●​ Utilisation de DTOs pour encapsuler et valider les données entrantes,
●​ Absence de génération dynamique de contenu HTML dans le DOM,
●​ Aucun stockage ou manipulation de secrets dans le frontend.​

 Bien que les communications internes ne soient pas encore systématiquement
chiffrées, une transition vers HTTPS avec TLS côté backend est possible pour renforcer
la sécurité.

A05-2021 – Security Misconfiguration
L’API Spring Boot est configurée pour accepter uniquement les requêtes provenant des
frontends autorisés, localisés sur les ports localhost:5173 et localhost:5174 (configuration
CORS restreinte).
Seules les méthodes HTTP nécessaires (GET, POST, PATCH, PUT, DELETE) sont autorisées, les
autres étant bloquées par défaut.

Des protections supplémentaires (comme les headers de sécurité HTTP, la désactivation des
consoles de debug, et la gestion fine des logs) sont possibles pour renforcer la sécurité de la
configuration.

A06-2021 – Vulnerable and Outdated Components
Les dépendances utilisées dans le frontend Vue.js et le backend Spring Boot sont maintenues
à jour régulièrement.
Côté frontend, la commande npm audit est utilisée pour identifier les vulnérabilités connues,
et les mises à jour sont effectuées dès que possible (npm audit fix). Les packages non utilisés
sont supprimés du projet.
Côté backend, les dépendances Gradle sont surveillées et IntelliJ Ultimate a une surveillance
des CVE (Common Vulnerabilities and Exposures).

Deux failles sont détectées :

1- CVE-2025-11226 : Elle concerne l’utilisation de Spring avec Logback mais non
utilisé dans mon projet. J’ai donc demandé d’ignorer l’alerte en la justifiant par sa non
applicabilité dans mon projet.

2- CVE-2025-48924 : Elle concerne une dépendance apache (commons-lang en
version antérieur à 3.18.0)

J’ai vérifié les dépendances avec la commande
“ ./gradlew dependencies “ dans le terminal.
J’étais en 3.17.0 donc effectivement antérieur à 3.18.0

J’ai donc mis à jour et vérifié dans mon build.gradle la version 3.18.0

​ 47/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

A07-2021 - Identification and authentication failures
Ce projet n’implémente pas de mécanismes d’authentification, de gestion de sessions ou de
tokens.Le contrôle d’accès est géré par la plateforme globale en dehors du périmètre de
cette application.
Par conséquent, cette vulnérabilité n’est pas applicable à notre projet.

A08-2021 – Software and Data Integrity Failures
Côté frontend, les dépendances npm sont installées exclusivement depuis le registre officiel,
avec un contrôle d’intégrité automatique via le fichier package-lock.json. Les mises à jour
sont régulièrement effectuées grâce aux outils npm audit et npm audit fix.
Côté backend, les dépendances Gradle sont gérées via le plugin
io.spring.dependency-management, avec des vérifications régulières des versions et une
utilisation exclusive de dépôts officiels (Maven Central).
Ces mesures garantissent la fiabilité, la provenance et la mise à jour sécurisée des
composants utilisés, réduisant ainsi les risques liés à la chaîne d’approvisionnement
logicielle.

A09-2021 – Security Logging and Monitoring Failures
Actuellement, cette application ne met pas en place de mécanismes de journalisation et de
surveillance des événements de sécurité.
Cette fonctionnalité pourrait être déléguée à un système centralisé ou à la plateforme
globale qui gère l’ensemble de la supervision et des alertes.

A10-2021 – Server-Side Request Forgery (SSRF)
Comme vu précédemment nous avons restreint les types de requêtes au niveau du controller
de l’API ce qui limite les possibilités d’attaques.

L’utilisation de DTO permet de contrôler strictement la structure et le type des données
reçues par l’API. Grâce aux annotations de validation (ex : @NotNull, @Pattern, @Size, etc.),
seules les données conformes au schéma attendu sont acceptées.
Cela limite fortement la possibilité pour un attaquant de fournir des URLs malicieuses ou des
paramètres imprévus qui pourraient déclencher des requêtes dangereuses côté serveur.

Ainsi, la validation côté backend via les DTO et la limitation des requêtes constituent 2 lignes,
contribuant à la prévention des vulnérabilités SSRF.

​ 48/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Recherche à partir de site anglophone

Dans le cadre de mon utilisation de Vue.js, j’ai mis en place un système de navigation entre
les différentes pages de l’application. Pour cela, j’ai utilisé Vue Router, l’outil de routage
officiel du framework. Afin de bien comprendre son fonctionnement, j’ai consulté la
documentation officielle disponible à l’adresse suivante : https://router.vuejs.org/guide/ .
Cette ressource est considérée comme la référence la plus fiable, car elle est maintenue par
l’équipe qui développe Vue.js.
D’une manière générale je privilégie l’utilisation de documentation officielle des langages ou
framework utilisés. Si je ne trouve pas je recherche sur :

-​ stackoverflow.com
-​ developer.mozilla.org

Extrait du site Vue

Traduction du “Getting Started” du guide disponible à l’adresse
https://router.vuejs.org/guide .

Commencer
Regarder un cours vidéo gratuit sur Vue Router
Vue Router est la solution officielle de routage côté client pour Vue.
Le routage côté client est utilisé par les applications en page unique (SPAs) pour lier l’URL du
navigateur au contenu visionné par l’utilisateur. Au fur et à mesure que les utilisateurs
naviguent dans l’application, l’URL est mise à jour en conséquence, mais la page n’a pas
besoin d’être rechargée depuis le serveur.
Vue Router est construit sur le système des composants vue. Vous configurez les routes pour
dire au routeur Vue quels composants afficher pour chaque chemin d’URL.
Ce guide supposera que vous êtes déjà familier avec Vue lui-même. Vous n’avez pas besoin
d’être un expert de Vue, mais vous pourrez occasionnellement avoir besoin de vous référer à
la documentation du cœur de Vue pour plus d’information concernant certaines
fonctionnalités.
Un exemple
Pour présenter certaines des idées principales, nous allons étudier cet exemple
Exemple de l’aire de jeu Vue
Commençons en regardant à la racine du composant, “App.vue”
App.vue
…{ exemple de code }...
Ce modèle utilise deux composants fournis par Vue Router, RouterLink et RouterView.
Au lieu d’utiliser les balises classiques <a>, nous utilisons le composant personnalisé
RouterLink pour créer des liens. Ceci permet à Vue Router de changer l’URL sans recharger la
page, de gérer la génération d’URL, l’encodage, et diverses autres caractéristiques. Nous
irons dans plus de détails concernant RouterLink plus loin dans les chapitres du guide.
Le composant RouterView informe Vue Router où faire l’affichage de la route composant
actuel. C’est le composant qui correspond au chemin d’URL actuel. Il n’a pas besoin d’être
dans App.vue, vous pouvez le mettre n'importe où pour l’adapter à votre mise en page, mais
il doit être mis quelque part, autrement Vue Router ne fera le rendu de rien du tout.

​ 49/65​

https://router.vuejs.org/introduction.html
https://router.vuejs.org/guide/
https://stackoverflow.com/
https://developer.mozilla.org/
https://router.vuejs.org/guide

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

L’exemple ci-dessous utilise aussi {{ $route.fullPath }}. Vous pouvez utiliser $route dans votre
modèle de composant pour accéder à un objet qui représente la route actuelle.
 Création de l’instance de routeur
L’instance de routeur est créé en appelant la fonction createRouter():
…{ exemple de code}...
L’option “routes” définit les routes en elles-mêmes, en mappant les chemins d’URL aux
composants. Le composant spécifié par l’option “component” est celui qui sera rendu par le
<Routerview> dans notre App.vue précédente. Ces composants de routage sont quelquefois
appelés “views”, bien qu’il ne s’agisse que de composants Vue normaux.
Il est intéressant de noter que si vous voulez utiliser des composants fonctionnels comme
composants de routage, vous devez leur donner un “displayName” pour qu’ils puissent être
différenciés des routages à chargement “lazy”.
…{ exemple de code }…
Routes comportent de nombreuses autres options que nous verrons plus tard dans le guide,
mais pour l’instant nous avons juste besoin d’un “path” (“chemin”) et un “component”
(“composant”).
L’option “history” contrôle comment les routes sont mappées sur l’URL et vice versa. Pour
l’exemple de l’aire de jeu nous avions utilisé “createMemoryHistory()”, qui ignore
complètement l’URL du navigateur et utilise sa propre URL interne à la place. Ça fonctionne
bien pour l’Aire de Jeux, mais ça n’est pas ce que vous voudriez dans une application réelle.
En règle générale vous souhaiteriez utiliser “createWebHistory()” à la place, ou peut-être
“createWebHashHistory()”. Nous couvrirons ce sujet de manière plus détaillée dans le guide
des modes d’histoires (“History modes).
Enregistrer le plugin routeur
Une fois notre instance de routeur créée, nous avons besoin de l’enregistrer comme un
plugin en appelant “use()” dans notre application :
…{ exemples de code }...
Ou de manière équivalente :
…{ exemples de code }...
Comme avec la plupart des plugins Vue, l’appel à “use()” doit être fait avant l’appel de
“mount()”.
Si vous êtes curieux de ce que ces plugins font, quelques unes de leurs responsabilités
comprennent :
1- enregistrement global des composants RouterView” et RouterLink”.
2- Ajout les propriétés globales $router et $route.
3- Activation des composables “useRouter()” and “useRoute()”.
4- Déclenche le routeur pour lancer la route initiale.
Accéder au routeur et à la route en cours
Vous allez probablement vouloir accéder au routeur à partir d’un autre endroit dans votre
application.
Si vous exportez l’instance du routeur depuis un module ES, vous pouvez importer l’instance
de routeur directement où vous en avez besoin. Dans certains cas c’est la meilleure
approche, mais nous avons d’autres options si nous sommes à l’intérieur d’un composant.
Dans le “template” du composant, l’instance de routeur est exposé ainsi “$router”. C’est
similaire à la propriété “$route” que nous avons vu plus tôt, mais notez le “r” supplémentaire
à la fin.

​ 50/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Si nous utilisons les Options d’API, nous pouvons y accéder avec les deux mêmes propriétés
comme “this.$router” et “this.$route” dans notre code javascript. Le composant
“HomeView.vue” dans l’exemple de l’aire de jeu accède au routeur de cette manière :
…{ exemple de code}...
Cette méthode appelle “push()”, qui est utilisé pour la navigation programmatique. Nous en
apprendrons plus à ce sujet plus tard.

​ 51/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Bilan et perspectives du projet

Le projet NewsWik Articles a pu être intégré dans la plateforme PDF à la fin de ma période de
stage. Le logiciel PDF devrait faire surface dans sa première version avant la fin de cette
année.

Le projet pourrait être amélioré en y ajoutant plus de fonctions à l’UI, afin d’améliorer l’UX :

-​ Ajouter un thème sombre et clair
-​ Choisir les préférences utilisateur en utilisant des tags sur les articles.
-​ Choisir d’alimenter la base d'articles avec une API externe.
-​ etc …

Les possibilités d’améliorations sont nombreuses, la première brique de l'application est
maintenant posée. La modularité de MongoDB pourrait permettre d’ajouter un certain
nombre de champs supplémentaires.

En tout cas les 3 applications réalisées pendant le stage remplissent les spécifications
demandées.

​ 52/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Conclusion

Avant de commencer mon stage, je n’étais pas sûr de moi ni de mes capacités à
suivre le rythme. Mais, j’ai pu constater que, même avec un niveau encore
débutant, j’ai réussi à développer une partie fonctionnelle d’un projet plus
large. Cela a été très motivant et valorisant.

Le projet sur lequel j’ai travaillé m’a vraiment intéressé, et j’ai beaucoup appris,
aussi bien sur le plan technique qu’organisationnel. Ce stage m’a permis
d’enrichir mes connaissances et de les mettre en pratique dans un cadre
professionnel concret.
Même si j’avais déjà une expérience du monde de l’entreprise, ce stage m’a
permis de découvrir un nouvel environnement, dans le domaine du
développement. J’ai été très bien accueilli, et l’ambiance bienveillante m’a
permis de m’intégrer rapidement et de travailler en confiance.

La formation DWWM de l’ENI m’a apporté des bases solides, qui m’ont permis
d’appréhender le stage avec sérieux.
Pendant la formation, le rythme était très soutenu et parfois complexe à suivre.
J’ai remarqué que l’école était bien reconnue dans le milieu professionnel.

Enfin, ce stage m’a confirmé que rien ne vaut la pratique pour progresser. C’est
pourquoi je souhaite poursuivre ma reconversion par une formation en
alternance CDA (Concepteur Développeur d’Applications), tout en continuant à
développer et capitaliser mes compétences à travers des projets personnels.

​ 53/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Annexes

Projet NewsWik - Articles

​ 54/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Annexe 1 - Espace de travail collaborateur

​ 55/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Annexe 2 - Synoptique du projet NewsWik

​ 56/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Annexe 3 - Diagramme UML - Cas d’utilisation Utilisateur

​ 57/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Annexe 4 - Diagramme UML - Cas d’utilisation Lecteur

​ 58/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Annexe 5 - Diagramme UML - Cas d’utilisation Auteur

​ 59/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Annexe 6 - Découpage Back et Front

​ 60/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Annexe 7 - MFE-Preview - Interface utilisateur(lecteur) et code

​ 61/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Annexe 8 - page Create - interface (Auteur) et code

​ 62/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

Annexe 9 - ArticleController.java

​ 63/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

​ 64/65​

Thomas SCHMIDT​ ​ Dossier de Projet - DWWM

​ 65/65​

	Remerciements
	
	Table des matières
	
	Introduction
	
	Lexique
	Présentation de l’entreprise
	Historique de l’entreprise
	Présentation des métiers
	
	Clients de référence
	Chiffres clés
	Site de Niort
	
	Equipe PDF
	Le projet PDF et les missions de l’équipe
	Organisation et environnement de travail
	Choix technologiques et méthodes de travail

	Liste des compétences du référentiel qui sont couvertes par le projet
	Configuration de l’environnement de travail
	

	Présentation générale du projet
	Accueil personnalisés PDF (widgets à droite, Articles et Météo) - Annexe 1
	

	Présentation détaillée de NewsWik Articles
	Représentation graphique des différents modules
	Synoptique fourni par Alltech Consulting en Annexe 2 pour plus de détails.
	Spécification du projet
	

	Définition des User Stories
	En tant que Lecteur :
	En tant qu’Auteur :

	Définition des Use Case
	Cas d’utilisation : Utilisateur
	Voir en annexe 3 le diagramme UML.

	Cas d’utilisation : Lecteur
	Voir annexe 4 le diagramme UML.

	Cas d’utilisation : Auteur
	Voir annexe 5 le diagramme UML.

	

	Maquettage
	Wireframes
	Module “Lecteur” Mfe-preview
	Application “Lecteur”
	
	Application “Auteur”

	Identité graphique
	Charte graphique
	

	Maquettes
	Maquette(mobile) - mfe-preview
	En annexe 7 un aperçu du mode “inspecter” de Microsoft Edge présente l’interface et son code.
	Maquette(mobile) - lecture d’un article
	Maquette(Desktop) - Auteur - Accueil
	
	Maquette(Desktop)- Auteur - Liste

	
	Maquette(mobile) - Auteur - Accueil & menu déplié

	

	Architecture du projet
	Voir Annexe 6 Découpage back/front.
	Back-End
	
	Front-End

	
	Partie Back-End du projet
	Arborescence du projet
	
	Base de données
	Exemple d’un article en base de données
	Détails du document
	Stockage de l’image

	L’ API
	Diagramme des classes
	Diagramme de classes de l’API

	
	La couche Model
	La classe Article.java

	
	La couche Repository
	L’interface ArticleRepository.java
	Détails de l'interface

	
	La couche Service
	Extrait de la classe ArticleService.java

	
	Le package Dto
	
	Extrait de la classe ArticleDto.java

	
	Le package Mapper
	Extrait de la classe ArticleMapper.java

	La couche Controller
	
	Extrait de la classe ArticleController.java
	En annexe 9 la classe ArticleController.java affiche toutes les opérations du CRUD.

	Endpoints
	Documentation des EndPoints de l’API
	Exemple Requête GET/articles

	Tests de l’API
	Détails du test simulé : requête POST (“/article”)
	Extrait du test de la requête POST ArticleControllerTest.java
	

	
	
	Détails du test simulé : la requête GET (“/articles”)
	Extrait du test de la requête GET ArticleControllerTest.java

	
	Résultats du test POST sous IntelliJ

	
	
	Test réels avec Postman
	Exemple de test de la Requête DELETE
	Résultat de la requête Delete sur Postman

	Exemple de test de la Requête GET
	Résultat de la requête Get sur Postman

	
	Partie Front-End du projet
	Arborescence du projet
	Exemple de fichier VueJs
	 Extrait de CreatePage.vue

	Règles de validation
	Extrait du fichier src/pages/PostForm.vue
	Extrait du script js de Postform.vue, création “textuel” de l’article
	
	Extrait du script js de Postform.vue, envoi de l’image par requête POST

	Interactions utilisateur
	Requêtes HTTP

	Design Responsive
	Extrait du CSS du fichier Header.vue, partie @media
	Onglet “Styles” des éléments bouton burger

	

	Veille Technologique
	
	Recherche à partir de site anglophone
	Extrait du site Vue

	Bilan et perspectives du projet
	
	Conclusion
	
	
	
	
	
	Annexes
	
	
	Annexe 1 - Espace de travail collaborateur
	Annexe 2 - Synoptique du projet NewsWik
	Annexe 3 - Diagramme UML - Cas d’utilisation Utilisateur
	
	Annexe 4 - Diagramme UML - Cas d’utilisation Lecteur
	Annexe 5 - Diagramme UML - Cas d’utilisation Auteur
	Annexe 6 - Découpage Back et Front
	Annexe 7 - MFE-Preview - Interface utilisateur(lecteur) et code
	Annexe 8 - page Create - interface (Auteur) et code
	Annexe 9 - ArticleController.java

